Network Optimization: Continuous and Discrete Models (Optimization, Computation, and Control)
An insightful, comprehensive, and up-to-date treatment of linear, nonlinear, and discrete/combinatorial network optimization problems, their applications, and their analytical and algorithmic methodology. It covers extensively theory, algorithms, and applications, and it aims to bridge the gap between linear and nonlinear network optimization on one hand, and integer/combinatorial network optimization on the other. Among its special features, the book: 1) provides a comprehensive account of the principal algorithms for linear network flow problems, including simplex, dual ascent, and auction algorithms 2) describes the application of network algorithms in many practical contexts, with special emphasis on data communication networks 3) develops in detail the computational complexity analysis of the main linear network optimization algorithms 4) covers extensively the main algorithms for specialized network problems, such as shortest path, max-flow, assignment, and traveling salesman 5) describes the main models for discrete network optimization problems, such as constrained shortest path, traveling salesman, vehicle routing, multidimensional assignment, facility location, spanning tree construction, etc 6) describes the main algorithmic approaches for integer-constrained network problems, such as branch-and-bound, Lagrangian relaxation and subgradient optimization, genetic algorithms, tabu search, simulated annealing, and rollout algorithms 7) develops the main methods for nonlinear network problems, such as convex separable and multicommodity flow problems arising in communication, transportation, and manufacturing contexts 8) discusses extensively auction algorithms, based on the author's original research on the subject 9) contains many examples, practical applications, illustrations, and exercises 10) contains much new material not found in any other textbook