Fundamentals of Vibrations
Fundamentals of Vibrations provides a comprehensive coverage of mechanical vibrations theory and applications. Suitable as a textbook for courses ranging from introductory to graduate level, it can also serve as a reference for practicing engineers. Written by a leading authority in the field, this volume features a clear and precise presentation of the material and is supported by an abundance of physical explanations, many worked-out examples, and numerous homework problems.
The modern approach to vibrations emphasizes analytical and computational solutions that are enhanced by the use of MATLAB. The text covers single-degree-of-freedom systems, two-degree-of-freedom systems, elements of analytical dynamics, multi-degree-of-freedom systems, exact methods for distributed-parameter systems, approximate methods for distributed-parameter systems, including the finite element method, nonlinear oscillations, and random vibrations. Three appendices provide pertinent material from Fourier series, Laplace transformation, and linear algebra.
TABLE OF CONTENTS:
1. Concepts from Vibrations 2. Response of Single-Degree-of-Freedom Systems to Initial Excitations 3. Response of Single-Degree-of-Freedom Systems to Harmonic and Periodic Excitations 4. Response of Single-Degree-of-Freedom Systems to Nonperiodic Excitations 5. Two-Degree-of-Freedom Systems 6. Elements of Analytical Dynamics 7. Multi-Degree-of-Freedom Systems 8. Distributed-Parameter Systems: Exact Solutions 9. Distributed-Parameter Systems: Approximate Methods 10. The Finite Element Method 11. Nonlinear Oscillations 12. Random Vibrations
Appendixes: Fourier Series / Laplace Transformation / Linear Algebra